A general class of centers for the Poincare problem
dc.contributor.author | Nicklason, G | |
dc.date.accessioned | 2024-12-06T23:43:30Z | |
dc.date.available | 2024-12-06T23:43:30Z | |
dc.date.issued | 2009 | |
dc.date.issued | 2009 | |
dc.date.issued | 2009 | |
dc.description.abstract | We consider the classical Poincare problem of a linear center perturbed by homogeneous polynomials of degree n >= 2. Using certain parity properties of a related differential equation, we develop a technique for obtaining center conditions for an arbitrary value of n and use it to exhibit explicitly new center conditions for n = 4,..., 8. (C) 2009 Elsevier Inc. All rights reserved. | |
dc.identifier | citekey: Nicklason2009 | |
dc.identifier.doi | 10.1016/j.jmaa.2009.04.047 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.other | cbu:614 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14639/827 | |
dc.subject | Abel differential equation | |
dc.subject | Center-focus problem | |
dc.subject | Symmetric centers | |
dc.subject | polynomial 1st integrals | |
dc.subject.discipline | Mathematics, Physics and Geology | |
dc.title | A general class of centers for the Poincare problem | |
dc.type | Text | |
dc.type | periodical | |
dc.type | academic journal | |
dc.type | Journal Article | |
oaire.citation.endPage | 80 | |
oaire.citation.issue | 1 | |
oaire.citation.startPage | 75 | |
oaire.citation.title | J. Math. Anal. Appl. | |
oaire.citation.volume | 358 |