A general class of centers for the Poincare problem

dc.contributor.authorNicklason, G
dc.date.accessioned2024-12-06T23:43:30Z
dc.date.available2024-12-06T23:43:30Z
dc.date.issued2009
dc.date.issued2009
dc.date.issued2009
dc.description.abstractWe consider the classical Poincare problem of a linear center perturbed by homogeneous polynomials of degree n >= 2. Using certain parity properties of a related differential equation, we develop a technique for obtaining center conditions for an arbitrary value of n and use it to exhibit explicitly new center conditions for n = 4,..., 8. (C) 2009 Elsevier Inc. All rights reserved.
dc.identifiercitekey: Nicklason2009
dc.identifier.doi10.1016/j.jmaa.2009.04.047
dc.identifier.issn0022-247X
dc.identifier.othercbu:614
dc.identifier.urihttps://hdl.handle.net/20.500.14639/827
dc.subjectAbel differential equation
dc.subjectCenter-focus problem
dc.subjectSymmetric centers
dc.subjectpolynomial 1st integrals
dc.subject.disciplineMathematics, Physics and Geology
dc.titleA general class of centers for the Poincare problem
dc.typeText
dc.typeperiodical
dc.typeacademic journal
dc.typeJournal Article
oaire.citation.endPage80
oaire.citation.issue1
oaire.citation.startPage75
oaire.citation.titleJ. Math. Anal. Appl.
oaire.citation.volume358

Files

Collections