Matrix A(p) Weights, Degenerate Sobolev Spaces, and Mappings of Finite Distortion
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We study degenerate Sobolev spaces where the degeneracy is controlled by a matrix weight. This class of weights was introduced by Nazarov, Treil and Volberg, and degenerate Sobolev spaces with matrix weights have been considered by several authors for their applications to PDEs. We prove that the classical Meyers-Serrin theorem, , holds in this setting. As applications we prove partial regularity results for weak solutions of degenerate p-Laplacian equations, and in particular for mappings of finite distortion.